metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gerd W. Rabe,^a* Louise M. Liable-Sands,^b James A. Golen^c and Arnold L. Rheingold^d

 Technische Universität München,
Anorganisch-chemisches Institut,
Lichtenbergstraße 4, 85747 Garching,
Germany, ^bUniversity of Delaware, Department of Chemistry and Biochemistry, Newark,
Delaware 19716, USA, ^cUniversity of
Massachusetts Dartmouth, Department of
Chemistry and Biochemistry, North Dartmouth,
MA 02747, USA, and ^dUniversity of California,
San Diego, Department of Chemistry and
Biochemistry, La Jolla, CA 92093, USA

Correspondence e-mail: g.rabe@lrz.tu-muenchen.de

Key indicators

Single-crystal X-ray study T = 198 K Mean σ (C–C) = 0.004 Å R factor = 0.038 wR factor = 0.109 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis(µ-2,2'-4,4'-6,6'-hexamethyl-µ-terphenyl-2'-phosphanido)bis[(*N*-methylimidazole)rubidium(I)]

The solid-state structure of $[{(C_{24}H_{25})P(H)}Rb(C_4H_6N_2)]_2$ or $[Rb_2(C_{24}H_{26}P)_2(C_4H_6N_2)_2]$, a novel base adduct of tetrameric $[DmpP(H)Rb]_4$ (Dmp = 2,6-dimesitylphenyl), is reported. It exhibits a dimeric centrosymmetric arrangement.

Received 24 September 2003 Accepted 16 October 2003 Online 23 October 2003

Comment

Until now the number of structurally authenticated molecular phosphanide compounds of the heavier alkali metals rubidium and caesium is still relatively small (Frenzel *et al.*, 2001; Izod, 2000; Izod *et al.*, 2001; Rabe, Heise *et al.*, 1998; Rabe, Kheradmandan *et al.*, 1998; Rabe *et al.*, 1999, 2000; Smith, 1998). The previously reported tetrameric rubidium phosphanide compound [DmpP(H)Rb]₄ (Rabe, Kheradmandan *et al.*, 1998; Smith, 1998) is not complexed by classical Lewis bases such as tetrahydrofuran, but achieves coordinative saturation instead through π -arene interactions exclusively. We were interested in investigating the possibility of breaking up the Rb₄P₄framework and coordinating Lewis bases to the Rb atom using bases stronger than tetrahydrofuran.

The molecular structure of the title compound, (I), features a dimeric arrangement. In the centrosymmetic Rb₂P₂ unit, the Rb atom is coordinated by an N-MeIm ligand (N-MeIm = Nmethylimidazole) in an unprecedented η^2 -bonding mode [Rb-N1 = 2.927 (3) Å and Rb-C25 = 3.441 (3) Å]. The N atom deviates by 2.89 Å from the Rb₂P₂ plane and the sum of the P-Rb-P and the two N-Rb-P angles is 254.5° . Additionally, the metal atom is π -coordinated by two mesityl rings of different terphenyl ligands; one aryl ring coordinates to the Rb atom in an approximate η^6 -fashion, with Rb-C distances ranging from 3.297 (3) (for C2) to 3.700 (3) Å (for C5), the other in an η^3 -mode [Rb-C = 3.393 (3) Å for C16, 3.533 (3) Å for C15, and 3.625 (3) Å for C17]. Also, one of the methyl groups (C24) of the mesityl ring that is η^3 -bonded to a Rb atom shows an additional short interatomic contact to the other metal atom, at a distance of 3.476 (3) Å. A very short

Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme for the symmetry-independent half of the molecular system. Displacement ellipsoids are drawn at the 30% probability level and H atoms, except for H1A and H1AA, have been omitted for clarity. Non-H atoms labeled with A and atom H1AA are related by the symmetry transformation (1 - x, 1 - y, 1 - z).

Figure 2

Unit-cell diagram, viewed along the c axis. All H atoms have been omitted for clarity.

P1-H1A distance of 1.09 (4) Å was found for H1A along with an interatomic interaction with the symmetry-generated Rb atom; $Rb1^{i}$ -H1A at 2.85 (4) Å, with a P1-H1A-Rb1ⁱ angle of 151 (3)° [symmetry code: (i) 1 - x, 1 - y, 1 - z]. The $Rb1^{i}$ -P1 distance of 3.8448 (8) Å is greater than the Rb1-P1 distance of 3.3185 (8) Å. The longer Rb1ⁱ-P1 bond interaction may explain the acute H1A-P1-Rb1ⁱ and H1A- $Rb1^{i}$ -P1 angles which are 21 (2) and 9 (2)°, respectively.

Experimental

Crystalline material of orange-yellow [DmpP(H)Rb(N-MeIm)]₂ was obtained by slow evaporation of a toluene solution of unsolvated [DmpP(H)Rb]₄ (Rabe, Kheradmandan et al., 1998) in the presence of a couple of drops of N-MeIm.

Z = 1

Crystal data

 $[Rb_2(C_{24}H_{26}P)_2(C_4H_6N_2)_2]$ $M_r = 1026.00$ Triclinic, $P\overline{1}$ a = 8.6940(3) Åb = 12.3225 (4) Å c = 13.6724(5) Å $\alpha = 67.228 \ (1)^{\circ}$ $\beta = 75.138 (1)^{\circ}$ $\gamma = 85.917 (1)^{\circ}$ V = 1304.75 (8) Å³

Data collection

Siemens-Bruker P4 1K CCDdetector diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.393, T_{\max} = 0.454$

7167 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.110$ S = 1.054422 reflections 299 parameters H atoms treated by a mixture of independent and constrained

 $D_x = 1.306 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 3500 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 1.98 \text{ mm}^{-1}$ T = 198 (2) K Block, orange $0.50 \times 0.40 \times 0.40 \; \text{mm}$

4422 independent reflections 3920 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$ $\theta_{\rm max} = 25.0^\circ$ $h=-9 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 16$

 $w = 1/[\sigma^2(F_o^2) + (0.0741P)^2]$ + 0.1125P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.86 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

refinement

Selected geometric parameters (Å, °).

Rb1-N1	2.927 (3)	Rb1-C25	3.441 (3)
Rb1-C2	3.297 (3)	Rb1-C15 ⁱ	3.533 (3)
Rb1-P1	3.3185 (8)	Rb1-C4	3.565 (3)
Rb1-C16 ⁱ	3.393 (3)	Rb1-C17 ⁱ	3.625 (3)
Rb1-C3	3.403 (3)	Rb1-C6	3.647 (2)
Rb1-C1	3.429 (3)	Rb1-C5	3.700 (3)
Rb1-C24	3.476 (3)	P1-Rb1 ⁱ	3.8448 (8)
N1-Rb1-P1	98.17 (6)	P1-Rb1-P1 ⁱ	66.92 (2)
Rb1-P1-Rb1 ⁱ	113.08 (2)	Rb1-N1-C25	101.61 (19)
Summating and a (i) 1	. 1 . 1 .		

Symmetry code: (i) 1 -x, 1- y, 1

Table 2	
Agostic interaction	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$P1-H1A\cdots Rb1^{i}$	1.09 (4)	2.85 (4)	3.8448 (8)	151 (3)
Symmetry code: (i) 1	-x, 1-y, 1-z			

Atom H1A was found in a Fourier difference map and was allowed to refine. All other H atoms were placed in calculated positions (C-H = 0.95-1.00 Å), with isotropic displacement parameters fixed at 1.2 or 1.5 times U_{eq} of the parent atom, and were refined as riding atoms. Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

References

Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Frenzel, C., Somoza, F. Jr, Blaurock, S. & Hey-Hawkins, E. (2001). J. Chem. Soc. Dalton Trans. pp. 3115–3118.

Izod, K. (2000). Adv. Inorg. Chem. 50, 33-107.

- Izod, K., Clegg, W. & Liddle, S. T. (2001). Organometallics, 20, 367–369.
- Rabe, G. W., Heise, H., Liable-Sands, L. M., Guzei, I. A. & Rheingold, A. L.
- (2000). J. Chem. Soc. Dalton Trans. pp. 1863–1866. Rabe, G. W., Heize, H., Yap, G. P. A., Liable-Sands, L. M., Guzei, I. A. &
- Rheingold, A. L. (1998). *Inorg. Chem.* **37**, 4235–4245. Rabe, G. W., Kheradmandan, S., Liable-Sands, L. M., Guzei, I. A. &
- Rheingold, A. L. (1998). Angew. Chem. Int. Ed. **37**, 1404–1407. Rabe, G. W., Liable-Sands, L. M., Incarvito, C. D, Lam, K.-C. & Rheingold, A.
- L. (1999). *Inorg. Chem.* **38**, 4342–4346. Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.
- Smith, J. D. (1998). Angew. Chem. Int. Ed. 37, 2071-2073.