Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gerd W. Rabe, ${ }^{\text {a* }}$ Louise M. Liable-Sands, ${ }^{\text {b }}$ James A. Golen ${ }^{\text {c }}$ and Arnold L. Rheingold ${ }^{\text {d }}$

${ }^{\text {a }}$ Technische Universität München,
Anorganisch-chemisches Institut, Lichtenbergstraße 4, 85747 Garching, Germany, ${ }^{\mathbf{b}}$ University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, USA, ${ }^{\text {c }}$ University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA, and dUniversity of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, CA 92093, USA

Correspondence e-mail:
g.rabe@lrz.tu-muenchen.de

Key indicators

Single-crystal X-ray study
$T=198 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.109$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}\left(\mu-2,2^{\prime}-4,4^{\prime}-6,6^{\prime}\right.$-hexamethyl- μ-terphenyl-2'-phosphanido)bis[(N-methylimidazole)rubidium(I)]

The solid-state structure of $\left[\left\{\left(\mathrm{C}_{24} \mathrm{H}_{25}\right) \mathrm{P}(\mathrm{H})\right\} \mathrm{Rb}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]_{2}$ or $\left[\mathrm{Rb}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{P}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$, a novel base adduct of tetrameric $[\mathrm{DmpP}(\mathrm{H}) \mathrm{Rb}]_{4}(\mathrm{Dmp}=2,6$-dimesitylphenyl), is reported. It exhibits a dimeric centrosymmetric arrangement.

Comment

Until now the number of structurally authenticated molecular phosphanide compounds of the heavier alkali metals rubidium and caesium is still relatively small (Frenzel et al., 2001; Izod, 2000; Izod et al., 2001; Rabe, Heise et al., 1998; Rabe, Kheradmandan et al., 1998; Rabe et al., 1999, 2000; Smith, 1998). The previously reported tetrameric rubidium phosphanide compound $[\mathrm{DmpP}(\mathrm{H}) \mathrm{Rb}]_{4}$ (Rabe, Kheradmandan et al., 1998; Smith, 1998) is not complexed by classical Lewis bases such as tetrahydrofuran, but achieves coordinative saturation instead through π-arene interactions exclusively. We were interested in investigating the possibility of breaking up the $\mathrm{Rb}_{4} \mathrm{P}_{4}{ }^{-}$ framework and coordinating Lewis bases to the Rb atom using bases stronger than tetrahydrofuran.

(I)

The molecular structure of the title compound, (I), features a dimeric arrangement. In the centrosymmetic $\mathrm{Rb}_{2} \mathrm{P}_{2}$ unit, the Rb atom is coordinated by an N-MeIm ligand $(N$-MeIm $=N$ methylimidazole) in an unprecedented η^{2}-bonding mode $[\mathrm{Rb}-\mathrm{N} 1=2.927$ (3) \AA and $\mathrm{Rb}-\mathrm{C} 25=3.441$ (3) $\AA]$. The N atom deviates by $2.89 \AA$ from the $\mathrm{Rb}_{2} \mathrm{P}_{2}$ plane and the sum of the $\mathrm{P}-\mathrm{Rb}-\mathrm{P}$ and the two $\mathrm{N}-\mathrm{Rb}-\mathrm{P}$ angles is 254.5°. Additionally, the metal atom is π-coordinated by two mesityl rings of different terphenyl ligands; one aryl ring coordinates to the Rb atom in an approximate η^{6}-fashion, with $\mathrm{Rb}-\mathrm{C}$ distances ranging from 3.297 (3) (for C2) to 3.700 (3) \AA (for C5), the other in an η^{3}-mode $[\mathrm{Rb}-\mathrm{C}=3.393$ (3) \AA for C 16 , 3.533 (3) \AA for C15, and 3.625 (3) \AA for C17]. Also, one of the methyl groups (C24) of the mesityl ring that is η^{3}-bonded to a Rb atom shows an additional short interatomic contact to the other metal atom, at a distance of 3.476 (3) Å. A very short

Received 24 September 2003
Accepted 16 October 2003
Online 23 October 2003

Figure 1
The molecular structure of the title compound, showing the atom-labeling scheme for the symmetry-independent half of the molecular system. Displacement ellipsoids are drawn at the 30% probability level and H atoms, except for $\mathrm{H} 1 A$ and $\mathrm{H} 1 A A$, have been omitted for clarity. Non- H atoms labeled with A and atom H1AA are related by the symmetry transformation $(1-x, 1-y, 1-z)$.

Figure 2
Unit-cell diagram, viewed along the c axis. All H atoms have been omitted for clarity.

P1-H1 A distance of 1.09 (4) \AA was found for H1 A along with an interatomic interaction with the symmetry-generated Rb atom; $\mathrm{Rb} 1^{\mathrm{i}}-\mathrm{H} 1 A$ at 2.85 (4) \AA, with a $\mathrm{P} 1-\mathrm{H} 1 A-\mathrm{Rb} 1^{\mathrm{i}}$ angle of $151(3)^{\circ}$ [symmetry code: (i) $1-x, 1-y, 1-z$]. The $\mathrm{Rb} 1^{\mathrm{i}}-\mathrm{P} 1$ distance of 3.8448 (8) \AA is greater than the Rb1-P1 distance of 3.3185 (8) \AA. The longer $\mathrm{Rb} 1^{\mathrm{i}}-\mathrm{P} 1$ bond interaction may explain the acute $\mathrm{H} 1 A-\mathrm{P} 1-\mathrm{Rb} 1^{\mathrm{i}}$ and $\mathrm{H} 1 A-$ $\mathrm{Rb} 1^{\mathrm{i}}-\mathrm{P} 1$ angles which are $21(2)$ and $9(2)^{\circ}$, respectively.

Experimental

Crystalline material of orange-yellow $[\operatorname{DmpP}(\mathrm{H}) \mathrm{Rb}(N-\mathrm{MeIm})]_{2}$ was obtained by slow evaporation of a toluene solution of unsolvated $[\mathrm{DmpP}(\mathrm{H}) \mathrm{Rb}]_{4}($ Rabe, Kheradmandan et al., 1998) in the presence of a couple of drops of N-MeIm.

Crystal data

$\left[\mathrm{Rb}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{P}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=1026.00$
Triclinic, $P \overline{1}$
$a=8.6940$ (3) A
$b=12.3225$ (4) \AA
$c=13.6724$ (5) \AA
$\alpha=67.228(1)^{\circ}$
$\beta=75.138(1)^{\circ}$
$\gamma=85.917(1)^{\circ}$
$V=1304.75(8) \AA^{3}$
$Z=1$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3500
reflections
$\theta=2.0-25.0^{\circ}$
$\mu=1.98 \mathrm{~mm}^{-1}$
$T=198$ (2) K
Block, orange
$0.50 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection

Siemens-Bruker P41K CCD-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.393, T_{\text {max }}=0.454$
7167 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.05$
4422 reflections
299 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0741 P)^{2}\right. \\
&+0.1125 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.91 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.86 \mathrm{e}^{-3}
\end{aligned}
$$

4422 independent reflections
3920 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 16$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Rb} 1-\mathrm{N} 1$	$2.927(3)$	$\mathrm{Rb} 1-\mathrm{C} 25$	$3.441(3)$
$\mathrm{Rb} 1-\mathrm{C} 2$	$3.297(3)$	$\mathrm{Rb} 1-\mathrm{C} 15^{\mathrm{i}}$	$3.533(3)$
$\mathrm{Rb} 1-\mathrm{P} 1$	$3.3185(8)$	$\mathrm{Rb} 1-\mathrm{C} 4$	$3.565(3)$
$\mathrm{Rb} 1-\mathrm{C} 16^{\mathrm{i}}$	$3.393(3)$	$\mathrm{Rb} 1-\mathrm{C} 17^{\mathrm{i}}$	$3.625(3)$
$\mathrm{Rb} 1-\mathrm{C} 3$	$3.403(3)$	$\mathrm{Rb} 1-\mathrm{C} 6$	$3.647(2)$
$\mathrm{Rb} 1-\mathrm{C} 1$	$3.429(3)$	$\mathrm{Rb} 1-\mathrm{C} 5$	$3.700(3)$
$\mathrm{Rb} 1-\mathrm{C} 24$	$3.476(3)$	$\mathrm{P} 1-\mathrm{Rb} 1^{\mathrm{i}}$	$3.8448(8)$
$\mathrm{N} 1-\mathrm{Rb} 1-\mathrm{P} 1$	$98.17(6)$	$\mathrm{P} 1-\mathrm{Rb} 1-\mathrm{P} 1^{\mathrm{i}}$	$66.92(2)$
$\mathrm{Rb} 1-\mathrm{P} 1-\mathrm{Rb} 1^{\mathrm{i}}$	$113.08(2)$	$\mathrm{Rb} 1-\mathrm{N} 1-\mathrm{C} 25$	$101.61(19)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Agostic interaction $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{P} 1-\mathrm{H} 1 A \cdots \mathrm{Rb} 1^{\mathrm{i}}$	$1.09(4)$	$2.85(4)$	$3.8448(8)$	$151(3)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Atom $\mathrm{H} 1 A$ was found in a Fourier difference map and was allowed to refine. All other H atoms were placed in calculated positions $(\mathrm{C}-$ $\mathrm{H}=0.95-1.00 \AA$), with isotropic displacement parameters fixed at 1.2 or 1.5 times $U_{\text {eq }}$ of the parent atom, and were refined as riding atoms.

metal-organic papers

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

References

Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Frenzel, C., Somoza, F. Jr, Blaurock, S. \& Hey-Hawkins, E. (2001). J. Chem. Soc. Dalton Trans. pp. 3115-3118.
Izod, K. (2000). Adv. Inorg. Chem. 50, 33-107.
Izod, K., Clegg, W. \& Liddle, S. T. (2001). Organometallics, 20, 367-369.
Rabe, G. W., Heise, H., Liable-Sands, L. M., Guzei, I. A. \& Rheingold, A. L. (2000). J. Chem. Soc. Dalton Trans. pp. 1863-1866.

Rabe, G. W., Heize, H., Yap, G. P. A., Liable-Sands, L. M., Guzei, I. A. \& Rheingold, A. L. (1998). Inorg. Chem. 37, 4235-4245.
Rabe, G. W., Kheradmandan, S., Liable-Sands, L. M., Guzei, I. A. \& Rheingold, A. L. (1998). Angew. Chem. Int. Ed. 37, 1404-1407.
Rabe, G. W., Liable-Sands, L. M., Incarvito, C. D, Lam, K.-C. \& Rheingold, A. L. (1999). Inorg. Chem. 38, 4342-4346.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, J. D. (1998). Angew. Chem. Int. Ed. 37, 2071-2073.

